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Abstract

Silicon substrates with p-n junction were layer-by-layer etched along the depth of the n-layer by the method of
electrochemical anodization on the surface; the obtained porous silicon films were analyzed by means of voltammetric
response, reflection spectra, and photoluminescence spectra as a function of the conductivity of the gradient layer along the
depth of the p-n junction. It is shown that current flow across the thin-film layer, in particular, with the increase of the layer
resistance along the etching depth, there appears a region of space charge associated with the depletion of charge in the
vicinity of the p-n junction and an increase in the forward current-voltage characteristics, after which current rectification

begins.
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1. Introduction

In modern technologies, dielectric films play a crucial role in
the field of micro-, nano, and optoelectronics, finding
applications in light-emitting diodes (LEDSs), photodetectors,
vacuum microelectronics cathodes, biological implants, gas
sensors, and membranes.*2l Among various dielectric films,
silicon dioxide (Si0-) stands out as one of the most accessible
and widely used materials, possessing significant potential for
use in sensors and solar energy.[!

In the synthesis of SiO:, methods such as magnetron
sputtering, low-pressure chemical vapor deposition (LPCVD),
thermal treatment of Si, and precipitation in a gel using tetra
ethyl ortho silicate (TEOS) as a precursor material are often
employed.[ A particular advantage of the latter method is the
formation of a continuous network of channels with a uniform
distribution throughout the volume of silicon dioxide.

Special attention is given to ordered SiO: structures, as
their properties differ from thin SiO films. Perpendicularly
oriented arrays of SiO: cylinders are of particular interest due
to densely packed frameworks, making them attractive for
chemical reactions and optical applications. Control over the
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order of the structure can be achieved by altering the formation
conditions and, consequently, the material's properties. Such
ordered structures can be obtained using lithographic methods.
In some published works, it is noted that porous silicon (PS)
layers consist of pillars and Si pores or isolated
nanocrystallites. On the other hand, PS can be considered a
system of interconnected quantum wells, often referred to as a
“quantum sponge”.[®l However, it has been reported that the
properties of PS, such as porosity, thickness, pore diameter,
and the microstructure of silicon, depend on anodization
conditions, including electrolyte, current density, plate type,
resistivity, etching time, and temperature.®” Study suggests
that the origin of fluorescence can be explained by the
presence of surface-bound molecular emitters, such as
siloxanes. Another hypothesis asserts the existence of
fluorescent surface particles trapped on the internal walls of
the pores as a source of light emission.! Increasing the
bandgap of PS is possible by reducing the size of
nanocrystallites.l¥l The mechanism of light emission in PS is
not fully understood. One hypothesis suggests that
luminescence occurs due to the quantum confinement of
charge carriers in the narrow walls of crystalline silicon that
separate the pores. The initial report of visible
photoluminescence (PL) at room temperature in PS structures
sparked widespread interest in the scientific community
regarding the derivative present in PS.[9 It has also been noted
that the presence of small oxygen-related energy donors in the
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range of 0.1 eV shows a clear correlation with the intensity of
red PL observed in PS. A competing model for the source of
luminescence is non-bridging oxygen hole centers.''6 The
study suggests that the source of PL in PS is a surface-bound
emitter, as indicated by observed features resembling the PL
of silicon-associated fluorophores linked to silicon
oxyhydroxides.'2 All hypotheses are based on the unique
microstructure of PS with a large surface area characterized by
high porosity and a crystalline structure with typical
dimensions ranging from nanometers to several
micrometers.[t

It is known that the conductivity of semiconductors
increases under the influence of irradiation due to the
absorption of photons in the semiconductor volume.l
Promising in this direction is the use of silicon nanocrystals as
the active sensing layer, as well as layers of wide-bandgap
materials. In this case, the absorption spectrum of
photoelectric converters expands into the short-wavelength
range due to quantum size-induced widening of the forbidden
band width in silicon nanocrystals and the absorption of high-
energy photons in wide-bandgap materials. An effective
system of silicon nanocrystals can be a layer of PS, as the walls
of the pores form a disordered system of quantum wells,
threads, and quantum dots. These processes involve the
excitation of electrons from lower-lying free or bound states
to higher free or bound states, as well as the recombination of
excited electrons to their ground states.'™ Therefore, all
semiconductors and some dielectrics based on semiconductors
are materials whose conductivity changes under the influence
of radiation.[*®! The conductivity is also influenced by the
carrier lifetime z, which is the time during which an excited
electron remains in the conduction band (zn) or an excited hole
remains in the valence band (zp). The carrier lifetime is
determined by the rate of surface and bulk recombination.

The carrier lifetime depends not only on the material
properties but also on the surface condition, sample size, and
manufacturing technology. In particular, chemical etchingt7-9l
of a polished sample surface allows for an increase in the
carrier lifetime at the surface to the extent that the measured
time, which corresponds to the surface recombination rate
close to the bulk value, represents the carrier lifetime in the
volume of the semiconductor.? Therefore, chemical texturing
possesses passivating properties,? healing broken bonds
within the structure.

Samples of nanocrystalline silicon obtained by chemical or
electrochemical anodization?>24 also exhibit conductivity
when an external voltage is applied, although PS is closer to a
dielectric semiconductor. This is because chemically etched
surfaces of silicon undergo active surface oxidation of
nanocrystallites.?) Moreover, fluorescent properties of the
Si/PS structure have been obtained,?¢21 including the infrared
reflection spectrum, as well as the influence of etching current
and solution composition on the sizes and shapes of SiO».

Deep-etched nanocrystallites, with a resistance of over 2
MQ silicon for both p- and n-type conductivity, have
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photosensitivity in the forward and reverse branches of the
current-voltage characteristic.22 It is noticeable that the
semiconductor conductivity o after electrochemical etching of
the surface of the diffusion layer sharply decreases with a
change in the optical properties of PS. The research was
conducted on pre-prepared diffusion p-n structures.

In this work, we will consider the gradient distribution of
charge carriers, in which the electron concentration in the n+
layer decreases towards the p-n junction. It is necessary to
study the conductivity of nanocrystalline silicon under various
surface etching conditions, and their effect on the PL spectra,
reflection spectra, as well as on the structural and electrical
properties of PS.

2. Experimental section

Monocrystalline p-type silicon with a resistivity of 10 Q-cm
and a thickness of 350 jum was used as the starting material.
Additionally, a pre-made structure with a p-n junction was
utilized, where the n-layer was formed by phosphorus thermal
diffusion at 950 <C, with a thickness of approximately 500-
600 nm. For electrochemical anodization, a continuous ohmic
contact made of Ni was formed on the back side using the
chemical deposition method. Silicon substrates with p-n
junctions were fractured into 1 cm=sample pieces and linear
structures with an area of 1.5>0.2 cm= Subsequently, the
samples were degreased in trichloroethylene, acetone, and
isooctane through ultrasonic treatment, etched, thoroughly
rinsed with deionized water, and dried.

The volt-ampere characteristics of the p-n structure were
measured in the dark. The linear structure cross-sections are
shown in Fig. 1. Point metal contacts based on an InGa alloy
were applied to the surfaces of the linear PS structure. Silver
wires were soldered to these contacts, and then volt-ampere
characteristics were measured.

PS on the silicon surface was formed using the
electrochemical anodization method in a solution of HF:
ethanol in a 1:1 ratio in a specially designed
polytetrafluoroethylene (PTFE) cell, with a current density
ranging from 5 mA/cm=2to 30 mA/cm=and etching times
ranging from 3 seconds to 60 minutes. The prepared samples
of PS were sent for the measurement of the electrical and
optical properties of the nanostructures.

\6n|
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Fig. 1 The structure for measuring the volt-ampere characteristics.
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The PL spectra were measured using the “Cary Eclipse
Fluorescence Spectrophotometer” in the wavelength range
from 300 nm to 1100 nm, with the excitation laser wavelength
set at 488 nm.

A profile of the charge carrier concentration distribution
was constructed through layer-by-layer etching of the surface
of the n-layer down to the p-n junction. Additionally, the
volumetric resistance R was measured across the depth of the
p-n junction. Furthermore, current-voltage characteristics of
the layer-by-layer etched gradient n-layer were recorded using
a semiconductor analyzer.

The reflectance coefficients of PS samples were measured
using the Lambda-35 setup in the spectral range from 300 nm
to 1100 nm.

3. Results and discussion
The directional change in concentration from the front surface
is considered as a gradient concentration of electronic
conductivity in the n-layer. To construct a profile of the
electron concentration distribution across the depth of the p-n
junction, the following electrical parameters will be
determined after each electrochemical etching stage:
conductivity, concentration, and etching depth. As known, the
conductivity of charge carriers is determined by the
formula. B9

o = neup + pepp = e(n#n + p.up) 1)
where e is the charge of an electron, ¢ is the conductivity, n is
the electron concentration, p is the hole concentration, and u
is the mobility. The initial surface concentration of the n-layer
under thermal diffusion conditions was n, = 10*° cm3. We
determined the specific conductivity 6 by measuring the
resistivity of the porous layer using the 4-probe method after
each electrochemical etching stage. The data are presented in
Table 1.

Table 1. Results of resistivity measurements.

p, Qcm o,(Q-cm)?! n, cm3 Xj, um
0.78x107° 1280 8x1018 0.05
3.1x10°8 320 2x1018 0.25
1.56x107 64 4410 0.4
3.1x10° 0.32x10° 2x10% 0.6

The depth of the p-n junction X; was determined based on
the conditions of phosphorus diffusion using the following
relationship:[!

1

X; = 2vD = 7(In x—z)z )
where D = 2 x 10 ¢cm% is the phosphorus diffusion
coefficient at a temperature of 950 <C, = 30 minutes is the
diffusion time, Np is the electron concentration across the
depth of the etched n-layer, and Na = 2 x 10> cm3s the initial

hole concentration in the p-layer.
Figure 2 illustrates the distribution of charge carriers
depending on the depth of the n-layer. It is evident that there
is a sharp decrease in concentration as the thickness
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approaches the p-n junction, leading to a reduction in electrical
conductivity. Beyond the p-n junction, the concentration
levels of the original silicon p-layer, i.e., holes with Na = 2 %
10% cm=become apparent.
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Fig. 2 shows the profile of electron concentration distribution
after each etching of the n-layer surface, where Np is the electron
concentration, and Na is the hole concentration.

The recorded current-voltage characteristics of the PS
samples across the depth of the p-n junction are shown in Fig.
3. It is observed that the current-voltage characteristics
undergo significant changes with increasing etching depth,
particularly with the increase in the surface bulk resistance of
the n-layer. For forward currents, as the voltage increases, the
direct currents grow, and for reverse currents, leakage currents
are also observed. Curve 1 corresponds to the current-voltage
characteristics of the unetched original p-n junction, and it is
evident that the current-voltage characteristics are close to an
ideal shape.

Current { mA)

Voltage (V)
Fig. 3 The current-voltage characteristics of the depth-etched n-
layer: 1- 0 sec, 2 -15 sec, 3 - 30 sec, 4 - 60 sec.
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Curves 2 and 3 correspond to PS, anodized at a current
density of 10 mA/cm3vith etching times of 15 and 30 seconds,
respectively. The series resistance gradually increases with the
increase in leakage current. Curve 4 corresponds to an etching
time of 60 seconds, where the forward current starts to rise
only at around 2.0 V, and after that, rectification of the current
begins.

The range from 0 to 2.0 V is the space-charge region,
where the concentration of charge carriers is minimal. As is
known, the sheet resistance is directly proportional to the

cotangent of the slope angle, that is:

R, = ctga = AA—‘I/ ©)]

Therefore, from Fig. 3, it can be seen that as the tangent of
the slope angle decreases, the resistance of the layer increases,
thereby reducing the conductivity of the porous n-layer.

Reflection coefficients were measured across the depth of
the n-layer in the spectral range from 400 nm to 1100 nm. The
reflection of the original and etched PS samples is shown in
Fig. 4. Reflection spectra of PS samples with short etching
times in the short-wavelength range from 400 nm to 650 nm
show minimal reflections ranging from 9% to 25%,
respectively. Furthermore, in the visible range from 650-1100
nm, a slight increase in reflection from 20-37% is observed,
due to the thinning of the film in the n-layer. Further reduction
in the thickness of the n-layer leads to an optical thickness,
indicating an increase in the transparency of the film.
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Fig. 4 Reflection spectra of the depth-etched n-layer of the p-n
junction: 1 — 0 sec, 2 — 15 sec, 3 — 30 sec, 4 — 60 sec.

As a result, the reflection spectrum of the film becomes an
interference spectrum with a high refractive index, with
reflections increasing on average in the short-wavelength
range by 18% and in the long-wavelength range by up to 80%.

The optical thickness is determined as:
yl
4= amD )
where d is the optical thickness of the n-layer film, n is the

refractive index of the film, and m is an integer (1, 2, 3,...).
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Thus, with the decrease in the thickness of the n-layer, i.e.,
with the increase in the resistance of the spreading layer, the
reflection coefficient sharply increases due to the reduction in
the thickness of PS and the concentration of charge carriers.

As demonstrated earlier, porosity increases with longer
etching times. It is known that the size of the silicon structure
on the surface decreases with increasing anodization time.
This leads to a shift of peaks towards lower wavelengths or
higher energy with longer anodization times. This is consistent
with the particle-in-a-box theory. The dependence of the
energy gap on anodization time and PS layer thickness.
Noticeable improvement in external quantum efficiency in the
wavelength range from 700 to 1000 nm enhances light
absorption at longer wavelengths, thus offering a promising
opportunity to enhance light absorption in thin-film silicon
solar cells. Additionally, electrochemical anodic oxidation at
room temperature can be used as a surface passivation method
for other nanostructured materials, as the thickness of the
oxidized layer can be precisely controlled by adjusting the
combination of current density and treatment period while
preserving the original nanostructure.!

However, in our case, the PL spectra of the p-type PS
sample and the etched PS sample with n-type conductivity
were measured. Fig. 5 shows the intense PL spectrum of p-
type conductive PS with a peak at a wavelength of 520 nm
obtained under anodization conditions: 10 mA/cm? for 25
minutes.

The PL spectra of the gradient layer of PS were measured
in the spectral range from 300 nm to 900 nm, along the depth
of the porous n-layer. PL from each layer of the etched n-layer
was measured separately to compare the intensity and shift of
the fluorescence spectrum peaks. The PL of the selectively
etched n-layer was measured separately to compare the
intensity and shift of the fluorescence spectrum peaks.
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Fig. 5 The PL spectrum of PS for p-type conductivity.

For PS of n-type conductivity, the PL intensity is lower
than that of p-type PS (Fig. 6). In the PL spectra (a), a
sensitivity edge appears around 420 nm on the left, and after
further etching for 5 seconds, a short-wavelength PL peak
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emerges. It can be seen that the peak at 620 nm decreases,
while a peak around 420 nm is present. This shift in the peak
suggests an enlargement of the bandgap of electrochemically
etched Si films compared to monocrystalline benchmark films.
The bandgap enlargement can be explained by the presence of
nanowires and/or nanocrystalline phases in the deposited Si
films.[32
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Fig. 6 The PL spectra of PS for n-type conductivity.

With further etching of the gradient n-layer for 10 seconds,
the long-wavelength peak of PL disappears, and only the
short-wavelength PL spectrum around 540 nm emerges (Fig.
7).
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Fig. 7 PL spectrum of PS (10 s).

During subsequent etching of the gradient layer for 20
seconds, the PL spectrum of n-type PS completely diminishes
(Fig. 8). In this case, we assume that the PS is finally etched
out from the n-layer.

Therefore, etching the gradient n-layer depth-wise of the
p-n junction leads to a change in the PL spectra, with a shift of
the spectrum peak towards the short-wavelength side due to
the quantum size effect.

Thus, the analysis of several experimental studies on
gradient coatings depth-wise of the p-n junction indicates the
reliability of measurements of electrical and optical
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characteristics. The repeatability and accuracy of the obtained
results depend on the stability of creating nanocrystalline
structures, the mode of producing nanoscience PS, and
especially on the preparation of the HF: ethoxyethanol
electrolyte composition.
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Fig. 8 PL spectrum of PS (20s).

The investigation of the etching depth concentration
profile revealed a fascinating phenomenon of current passing
through the thin film layer. Specifically, with the increase in
the resistance of the layer with depth of etching, a space charge
region arises associated with charge depletion near the p-n
junction. This leads to an increase in the forward voltage, after
which rectification of the current begins (Fig. 3).

The measurement of reflection spectra through the depth
of the n-layer is also modified as it approaches the p-n junction
boundary. In particular, the decrease in reflection occurs only
in the short-wavelength region. After further etching, there is
a sharp increase in the form of wave-like reflection, i.e.,
reflection spreads between the optical thickness in the
immediate vicinity of the p-n junction (Fig. 4).

An interesting experimental analysis revealed the spectrum
of PL through the depth of the p-n junction. The n-layer itself
does not luminesce, and the nanostructures emit light when
excited by short-wavelength radiation. This is because, in the
process, both holes and electrons are generated. Etching
proceeds through hole carriers, so we observe weak
luminescence in the visible wavelength range (Fig. 6). As we
approach the p-n junction, the reflections shift towards the
short-wavelength side due to quantum confinement.

4. Conclusions
A profile of the concentration distribution across the depth of
the p-n junction was formed using successive chemical
anodization of the n-layer surface. The specific conductivity,
carrier concentration, and depth of the concentration
distribution were determined.

From the voltamperometric characteristics, the nature of
the changes in forward currents relative to the carrier
concentration depth of the p-n junction was identified after
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each chemical etching. Additionally, the volt amperometric
characteristics were used to determine the space-charge region
where rectifying properties of the forward current occur with
an increase in applied voltage.

The spectrum of light reflection with a change in
conductivity in depth showed that there is a thickness of a high

[6] V. Airaksinen, Handbook of Silicon Based MEMS Materials
and Technologies, 2020.

[7] B. Khaniyev, M. Ibraimov, Y. Sagidolda, Y. Tezekbay, T.
Duisebayeyv, A. Tileu, A. Khaniyeva, The improved non-polar gas
sensing performance of surface-modified porous silicon-based
gas SEensors, Coatings, 2023, 13, 190, doi:

concentration of carriers with a reflectance coefficient from 3%10.3390/coatings13010190.

to 28% using this anodizing technology and also an optical
thickness of the concentration with interference reflection of
light ranging from 20 to 48% approaching the p-n transition.

Changes in conductivity through depth significantly influence
the spectra of PL in PS, causing a shift in the peak of the PL
spectrum from the visible range at 520 nm to the short-
wavelength range at 420 nm due to the quantum size effect.
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